Search results for "Euclidean distance matrix"

showing 4 items of 4 documents

Covering and differentiation

1995

CombinatoricsEuclidean distanceDiscrete mathematicsConvex geometryEuclidean spaceEuclidean geometryAffine spaceBall (mathematics)Euclidean distance matrixGaussian measureMathematics
researchProduct

Finite linear spaces in which any n-gon is euclidean

1986

Abstract An n-gon of a linear space is a set S of n points no three of which are collinear. By a diagonal point of S we mean a point p off S with the property that at least two lines through p intersect S in two points. The number of diagonal points is called the type of S. For example, a 4-gon has at most three diagonal points. We call an n-gon euclidean if (roughly speaking) it contains the maximal possible number of 4-gons of type 3. In this paper, we characterize all finite linear spaces in which, for a fixed number n ⩾ 5, any n-gon is euclidean. It turns out that these structures are essentially projective spaces or punctured projective spaces.

Discrete mathematicsLinear spaceDiagonalComputer Science::Computational GeometryEuclidean distance matrixTheoretical Computer ScienceCombinatoricsEuclidean geometryHomographyAffine spaceMathematics::Metric GeometryDiscrete Mathematics and CombinatoricsPoint (geometry)Linear separabilityMathematicsDiscrete Mathematics
researchProduct

Some inequalities involving the euclidean condition of a matrix

1960

Euclidean distanceComputational MathematicsMatrix (mathematics)Pure mathematicsApplied MathematicsNumerical analysisEuclidean geometryEuclidean distance matrixMathematicsNumerische Mathematik
researchProduct

Isolated roundings and flattenings of submanifolds in Euclidean spaces

2005

We introduce the concepts of rounding and flattening of a smooth map $g$ of an $m$-dimensional manifold $M$ to the euclidean space $\R^n$ with $m<n$, as those points in $M$ such that the image $g(M)$ has contact of type $\Sigma^{m,\dots,m}$ with a hypersphere or a hyperplane of $\R^n$, respectively. This includes several known special points such as vertices or flattenings of a curve in $\R^n$, umbilics of a surface in $\R^3$, or inflections of a surface in $\R^4$.

Surface (mathematics)Euclidean spaceGeneral MathematicsImage (category theory)Mathematical analysisEuclidean distance matrixHypersphereType (model theory)53A05Manifoldheight function53A07CombinatoricsDistance from a point to a plane58K05Distance squared functionMathematicsTohoku Mathematical Journal
researchProduct